Jie Ren 任杰

I am a fourth-year Ph.D. student in Department of Computer Science and Engineering at Michigan State University, advised by Professor Jiliang Tang in Data Science and Engineering Lab. Before joining DSE, I was an algorithm engineer in Search Strategy Department, Baidu Inc. I received my bachelor degree from Tsinghua University.

My research interests lie in Trustworthy and Interpretable AI, with a focus on data and model protection in GenAI.

Email: renjie3 [at] msu.edu

Google Scholar   /   Twitter   /   Github   /   LinkedIn     

profile photo
News

[Feb 2025]   One paper accepted by CVPR 2025!

[Jan 2025]   One paper accepted by AISTATS 2025!

[Jan 2025]   One paper accepted by WWW 2025 [Oral]!

[Nov 2024]   One paper accepted by TMLR!

[Sep 2024]   One paper accepted by EMNLP 2024!

[Aug 2024]   I will start my internship at Amazon in Fall 2024!

[Jul 2024]   My submission is accepted by ECAI 2024 Doctoral Consortium!

[Jul 2024]   One paper accepted by ECCV 2024!

[May 2024]   Two papers accepted by ACL 2024!

[Mar 2024]   I will start my internship at Sony AI in March.

Preprints (* equal contribution)

A General Framework to Enhance Fine-tuning-based LLM Unlearning
Jie RenZhenwei Dai,  Xianfeng Tang,  Hui Liu,  Jingying Zeng,  Zhen Li,  Rahul Goutam,  Suhang Wang,  Yue Xing,  Qi He,  Hui Liu 

EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations
Jie RenYingqian Cui,  Chen Chen,  Vikash Sehwag,  Yue Xing,  Jiliang Tang,  Lingjuan Lyu 

Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data
Shenglai Zeng,  Jiankun Zhang,  Pengfei He,  Jie RenTianqi Zheng,  Hanqing Lu,  Han Xu,  Hui Liu,  Yue Xing,  Jiliang Tang 

[Survey] Copyright Protection in Generative AI: A Technical Perspective
Jie RenHan Xu,  Pengfei He,  Yingqian Cui,  Shenglai Zeng,  Jiankun Zhang,  Hongzhi Wen,  Jiayuan Ding,  Pei Huang,  Lingjuan Lyu,  Hui Liu,  Yi Chang,  Jiliang Tang 

Defense Against Gradient Leakage Attacks via Learning to Obscure Data
Yuxuan Wan,  Han Xu,  Xiaorui Liu,  Jie RenWenqi Fan,  Jiliang Tang 

Publications (* equal contribution)

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models
CVPR 2025 
Jie Ren*,  Kangrui Chen*,  Yingqian Cui,  Shenglai Zeng,  Hui Liu,  Yue Xing,  Jiliang Tang,  Lingjuan Lyu 

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models
WWW 2025 [Oral] 
Jie RenKangrui Chen,  Chen Chen,  Vikash Sehwag,  Yue Xing,  Jiliang Tang,  Lingjuan Lyu 

Superiority of Multi-Head Attention in In-Context Linear Regression
AISTATS 2025 
Yingqian Cui,  Jie RenPengfei He,  Jiliang Tang,  Yue Xing 

DiffusionShield: A Watermark for Copyright Protection against Generative Diffusion Models
SIGKDD Explorations 2024 
Yingqian Cui*,  Jie Ren*Han Xu,  Pengfei He,  Hui Liu,  Lichao Sun,  Yue Xing,  Jiliang Tang 

FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models
SIGKDD Explorations 2024 
Yingqian Cui,  Jie RenYuping Lin,  Han Xu,  Pengfei He,  Yue Xing,  Wenqi Fan,  Hui Liu,  Jiliang Tang 

Stealthy Backdoor Attack via Confidence-driven Sampling
TMLR 2024 
Pengfei He,  Han Xu,  Jie RenYingqian Cui,  Shenglai Zeng,  Yue Xing,  Jiliang Tang,  Makoto Yamada,  Mohammad Sabokrou 

On the Generalization of Training-based ChatGPT Detection Methods
EMNLP 2024 Findings 
Han Xu,  Jie RenPengfei He,  Shenglai Zeng,  Yingqian Cui,  Amy Liu,  Hui Liu,  Jiliang Tang 

Copyright Protection in Generative AI
ECAI 2024 Doctoral Consortium 
Jie Ren 

Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention
ECCV 2024 
Jie RenYaxin Li,  Shenglai Zeng,  Han Xu,  Lingjuan Lyu,  Yue Xing,  Jiliang Tang 

Exploring Memorization in Fine-tuned Language Models
ACL 2024 
Shenglai Zeng,  Yaxin Li,  Jie RenYiding Liu,  Han Xu,  Pengfei He,  Yue Xing,  Jiliang Tang,  Dawei Yin 

The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (RAG)
ACL 2024 Findings 
Shenglai Zeng,  Jiankun Zhang,  Pengfei He,  Yue Xing,  Yiding Liu,  Han Xu,  Jie RenShuaiqiang Wang,  Dawei Yin,  Yi Chang,  Jiliang Tang 

A Robust Semantics-based Watermark for Large Language Model against Paraphrasing
NAACL 2024 Findings 
Jie RenHan Xu,  Yiding Liu,  Yingqian Cui,  Shuaiqiang Wang,  Dawei Yin,  Jiliang Tang 

Sharpness-Aware Data Poisoning Attack
ICLR 2024 [Spotlight, top %5] 
Penghei He,  Han Xu,  Jie RenYingqian Cui,  Hui Liu,  Charu C. Aggarwal,  Jiliang Tang 

Neural Style Protection: Counteracting Unauthorized Neural Style Transfer
WACV 2024 
Yaxin Li*,  Jie Ren*Han Xu,  Hui Liu 

Transferable Unlearnable Examples
ICLR 2023 
Jie RenHan Xu,  Yuxuan Wan,  Xingjun Ma,  Lichao Sun,  Jiliang Tang 

Probabilistic Categorical Adversarial Attack and Adversarial Training
ICML 2023 
Penghei He,  Han Xu,  Jie RenYuxuan Wan,  Zitao Liu,  Jiliang Tang 

Uniting Heterogeneity, Inductiveness, and Efficiency for Graph Representation Learning
TKDE 2021 
Tong Chen,  Hongzhi Yin,  Jie RenZi Huang,  Xiangliang Zhang,  Hao Wang 

Tutorial

Towards Adversarial Learning: From Evasion Attacks to Poisoning Attacks
KDD 2022 
Wentao Wang,  Han Xu,  Yuxuan Wan,  Jie RenJiliang Tang 

Invited Talks
  • Nov. 2023: Data Protection in Deep Learning. Institute of Computing Technology, Chinese Academy of Sciences.
  • Oct. 2023: Copyright Protection in Deep Generative Model. Shandong University.
  • Oct. 2023: Copyright Protection in Deep Generative Model. AI Time (Tsinghua University) [website]
  • Jul. 2023: DiffusionShield: A Watermark for Copyright Protection against GDMs. Qilu Youth Forum at Shandong University
  • Mar. 2023: Transferable Unlearnable Examples. Fudan University
Professional Services
  • PC member: NeurIPS'24-25, AAAI'24-25, WebConf'24-25, EMNLP'24, CIKM'22-24, WSDM'23-25, ICLR'25, RecSys'23, CVPR'25, NAACL'25, ICML'25, ICCV'25
  • Reviewer: TKDD, TKDE
  • Volunteer: KDD'22




Template from Jon Barron.