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Data protection in generative models

»Large-scale of data is the foundation of generative models
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»Unauthorized data
» Copyrighted data
* Privacy-sensitive data
* |ID information



Generative models

»For data owners:  hope to protect their data.
»For model builders: hope to provide a legal and safe service.

Data owners

Before releasing data: After releasing data:

Preventing data usage Detecting and verifying unauthorized data usage
» Adversarial perturbations (WACV’24)

« Unlearnable Examples (ICLR’23) * Membership Inference Attack (W\W\W'25 oral)

« Data Watermark (SIGKDD Explorations’24)
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https://openaccess.thecvf.com/content/WACV2024/html/Li_Neural_Style_Protection_Counteracting_Unauthorized_Neural_Style_Transfer_WACV_2024_paper.html
https://openreview.net/forum?id=-htnolWDLvP
https://arxiv.org/abs/2410.13088
https://arxiv.org/abs/2306.04642

Generative models

Model builders

Text-to-image (T2l) model
* Memorization mitigation (ECCV’24)
« Concept removal / Unlearning (CVPR’25)
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Large Language Models (LLMs)

Interpretability of LLM unlearning (ACL'25)
Potential risk of unlearning (Under review)

Truly forgetting OR pretending to forget


https://arxiv.org/abs/2403.11052
https://arxiv.org/abs/2406.14855
https://arxiv.org/abs/2502.17823
https://arxiv.org/abs/2506.00359
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Memorization in text-to-image model

O

[1] Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention. Ren et al, ECCV 2024.



Memorization issue in text-to-image (T2l) diffusion models
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Background

» A simple introduction of diffusion model

Fixed forward diffusion process

Noise

Generative reverse denoising process

* Forward process: adding noise into image. |
* Reverse process: Given | ", model predicts what noise is added. — Next step

> T2l diffusion models
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Background

> Cross attention in T2I model: Stable Diffusion = h
* Prompt: two dogs playing on the grass =
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Beginning tokens

100%
Attention on beginning token is
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Attention map

Non-memorization

Memorization

(In some attention heads) $-
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Finding 1

The attention is concentrated on specific tokens (trigger tokens) in some
attention heads

* Non-memorization
o Gradually concentrate on beginning token — concentrated distribution

* Memorization:
o Trigger token will distract attention from beginning token — disperse distribution
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Finding 2

Memorization’ attention has a slower reduction on summary tokens.

(More semantic information, better for trigger tokens)
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Detection and mitigation

» Detection mmm

[1] 4 0.9357 7.006
[2] - fast 1 1 0.9662 0.132
2] -slow 1 50 0.9957 2,582
Ours - D 1 50 0.9998 1.745
Ours - E 1 1 0.9933 0.116

Training w/o mitigation Attention mask =125 Ours

4 40 50 50 o o

® “\ﬂl . SIC["SFFTT sns, ﬂ :

» Mitigation

[1] Extracting training data from diffusion models. Carlini et al. USENIX Security 2023.
[2] Detecting, explaining, and mitigating memorization in diffusion models. Wen at al. ICLR 2024.
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Machine Unlearning for LLMs

O

[1] A General Framework to Enhance Fine-tuning-based LLM Unlearning. Ren et al, ACL 2025.



LLM unlearning

» Goal of unlearning: Removing the data influence from the LLM as if it
has never encountered the data.

® We release our LLM and provide
. the public unlearning service.

—> | LLMm

Model builder \
Unlearning User Interface
C(g)) _—7 Wy Unlearning Release again

User




LLM unlearning

Removal-based Suppression-based

Target: forget Target: pretend to forget

»Removal-based unlearning
« Gradient ascent (GA)

JCGA — _£train — E(;c,y)NDf [log 779(:9 | 58)]

e Core intuition of GA

o by fine-tuning with a reversed training loss, GA can negate the training influence of
training data

»Suppression-based unlearning

« Rejecting the forgetting data
o Q: “Who is Harry Potter?” A: “l don’t know”
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Existing issues

» Challenge: Model utility reduces (model performance on normal data)
 Destructive reversed loss.
 Catastrophic forgetting of previous training such as alignment.

»Motivation
« We hope to provide a general framework for fine-tuning-based unlearning for better utility.

Removal-based

Target: forget

Fine-tuning-based
unlearning

Suppression-based

Target: pretend to forget
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Q1: Does reversing the training loss truly negate the forgetting data’s influence?

»If so, the unlearned models should behave the same between

 the forgetting data
e the data it has never encountered.

»Experiment: TOFU dataset ( , retaining data,|never-seen datal)
* LLM has learned from and retaining data.
* Then itis unlearned from data.

A Forget A Retain 4 Never Forget-unlearn @ Retain-unlearn @ Never-unlearn

3

. 4 & =
= I A [ |
(a) Llama 3.1 by GD (b) Llama 3.1 by NPO (c) Mistral v0.1 by GD (d) Mistral v0.1 by NPO
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Q2: Is this distinct pattern associated with unlearning performance?

» The distinction: Class-wise Separability Discriminant (CSD). (Lower is more distinct.)

* Unlearning effectiveness: ROUGE-L Recall. (Lower is better unlearning.)

Llama 3.1 Mistral v0.1
GD NPO GD NPO

CSD 045 | 321 0.13 | 1.72
ROUGE-L Recall 0.016 | 0.197 | 0.001 | 0.127

Table 1: Unlearning effectiveness and distinction
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* Forgetting data:
 Normal data:
 Mixed data:

A Retain A World

Q3: How do GA-based methods unlearn?

»Experiment: Mixing forgetting data into normal data.

And
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(a) Llama 3.1 by GD

(b) Llama 3.1 by NPO

» Mixed data is dominated by forgetting data.
« Forgetting data works as unlearning signals.

(c) Mistral v0.1 by GD

(d) Mistral v0.1 by NPO
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Removal-based methods

Removal-based

>
Target: forget

Memorize
&
Suppress

>

Suppression-based

Target: pretend to forget
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Model utility

Why do we choose fine-tuning?

» Changing the parameters to remove knowledge (but actually failed)
» Worse, utility reduces. (The best way to preserve utility is to change as less as possible.)

» Our strategy:

o freeze the main model

o add additional modules for fine-tuning.
« Two plug-and-play components

o Soft gate function

o ReFT module

23



Our fine-tuning framework

* Representation Fine-tuning (ReFT)I" < Gated Representation UNlearning (GRUN)

Embeddings Embeddings
(Enbeddnes || R ucer (1) [Emessines )| GRUN o ()
i)
f . ¢ (h")
0 T
\ h’z \ h gl) Soft gate
[ i-th token ] [ i-th token J
Brop (h?(;l)) _ hz(-l) L4 (hzgz)) ® GrRUN (hz(l)) _ hz(l) +g (hgl))qﬁ (hz(l))
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[1] ReFT: Representation Finetuning for Language Models. Wu et al, NeurlPS 2024.



Experiments

ROUGE-L Recall
L LM pg  Method  psze  Hours Unlearn]  Utility(Retain/Fact/World)T
59 Vanilla 100% 3.19 0.005 0.703 (0.493/0.854/0.762)
I lama ° |GRUN 0.001% @ 0.02 0.002 0.843 (0.888/0.843/0.798)
0% Vanilla 100% 6.33 0.005 0.695 (0.483/0.818/0.785)
Db ° GRUN 0.001% 0.02 | 0016 | 0.832(0.906/0.729/0.862)
59 Vanilla 100% 3.01 0.004 0.568 (0.742/0.360/0.601)
Mistral ° GRUN 0.045% 0.06 0.000 0.660 (0.956/0.485/0.539)
0% Vanilla 100% 6.07 0.001 0.396 (0.687/0.099/0.403)
° GRUN 0.045% 0.18 0.000 0.595 (0.891/0.390/0.504)
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Scaling laws for trustworthy Al

One weakness: Existing works may focus on small models like Llama — 7B.

Good or bad when model grows? Two different directions:

Wy
Larger models learn more Larger models have better
harmful knowledge. ability to avoid generating
harmful content.
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[1] Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models. Ren et al., WWW 2025.
[2] Emergent Abilities of Large Language Models. Wei et al., TMLR 2022.
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Data protection: Deployable and truly-forgetting LLM unlearning

LLM unleaming

N

Deployable Truly forgetting

 Gradient ascent

« Model editing

LLM
* More powerful tools
Retrieval-Augmented  Interpretability (model)
Generation (RAG) » Selective forgetting (data)
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