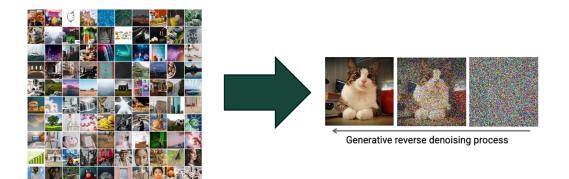
Data Protection in Generative Al

Jie Ren

Department of Computer Science and Engineering
Michigan State University
renjie3@msu.edu
08/07/2025

Data protection in generative models

➤ Large-scale of data is the foundation of generative models



- ➤ Unauthorized data
 - Copyrighted data
 - Privacy-sensitive data
 - ID information
 - •

Generative models

For data owners: hope to protect their data.

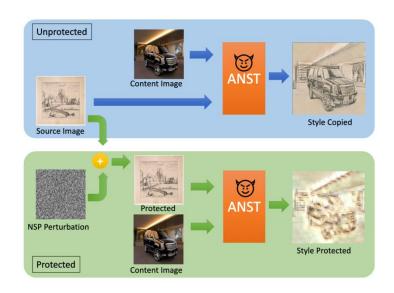
For model builders: hope to provide a legal and safe service.

Data owners

Before releasing data:

Preventing data usage (by modifying data)

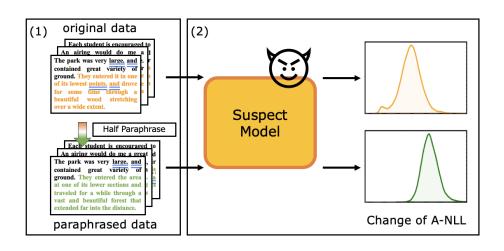
- Adversarial perturbations (<u>WACV'24</u>)
- Unlearnable Examples (<u>ICLR'23</u>)



After releasing data:

Detecting and verifying unauthorized data usage (by testing model)

- Membership Inference Attack (<u>WWW'25</u> oral)
- Data Watermark (<u>SIGKDD Explorations'24</u>)

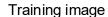


Generative models

Model builders

Text-to-image (T2I) model (by post-editing)

- Memorization mitigation (<u>ECCV'24</u>)
- Concept removal / Unlearning (<u>CVPR'25</u>)



Generated image

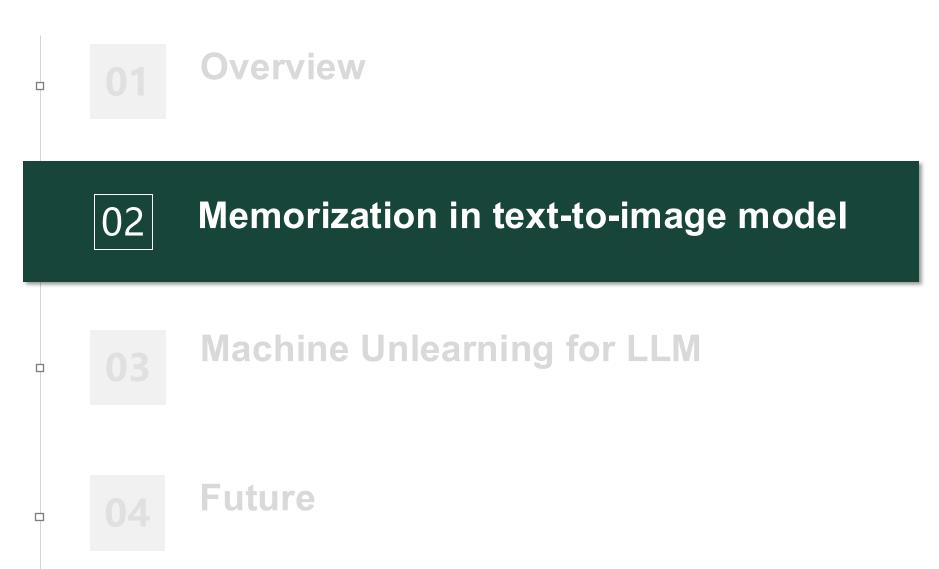
Ours

Large Language Models (LLMs) (by unlearning)

- Interpretability of LLM unlearning (<u>ACL'25</u>)
- Potential risk of unlearning (<u>Under review</u>)

Truly forgetting OR pretending to forget

CONTENTS



[1] Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention. Ren et al, ECCV 2024.

Memorization issue in text-to-image (T2I) diffusion models

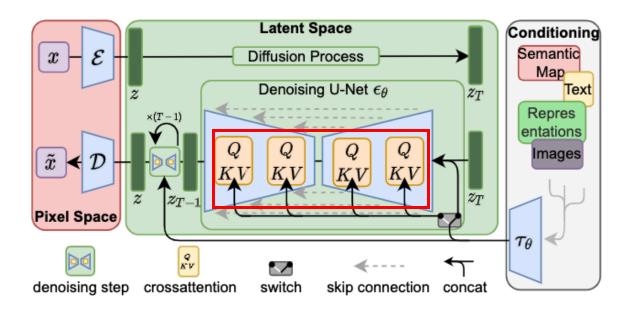
Training image

Caption: Living in the light with Ann Graham Lotz

Generated image

Prompt: with Ann Graham Lotz

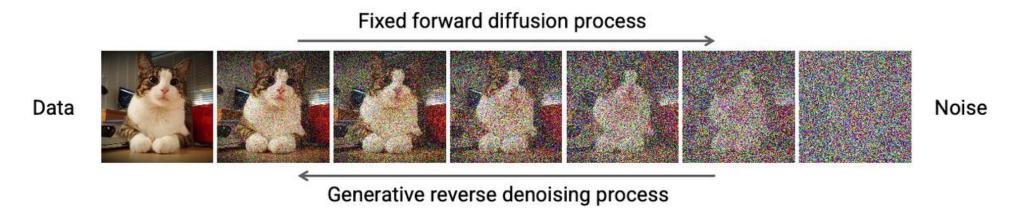
Memorization is always triggered by specific tokens.



(Cross attention)

Background

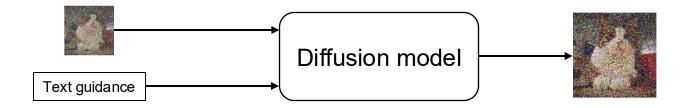
➤ A simple introduction of diffusion model



- Forward process: adding noise into image.
- Reverse process: Given

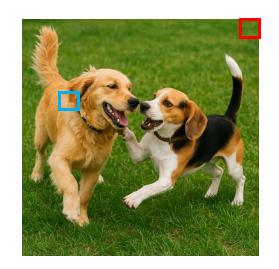
, model predicts what noise is added. → Next step

>T2I diffusion models



Background

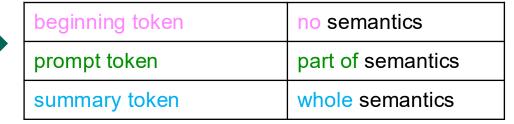
- ➤ Cross attention in T2I model: Stable Diffusion
 - Prompt: two dogs playing on the grass



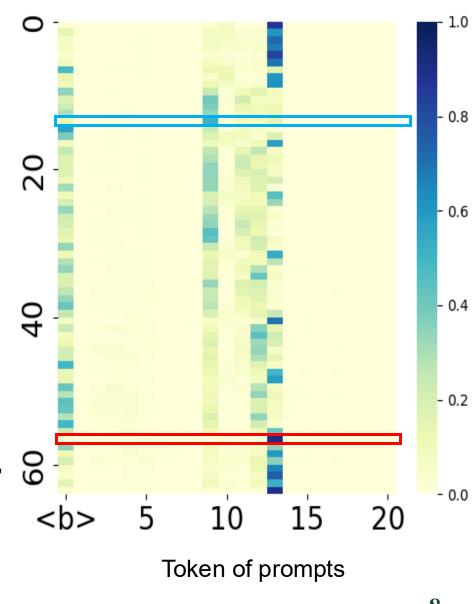
➤ Category of tokens in the prompts

"<begin> two dogs playing on the grass <end> <padding> ... <padding>"

Causal encoder



Dim. of image representation



Beginning tokens

Attention on beginning token is increasing.

- Early steps (large *t*):
 - o main body of picture
 - o more text information needed.
- Later steps (small *t*):
 - o denoising
 - o less text information needed.

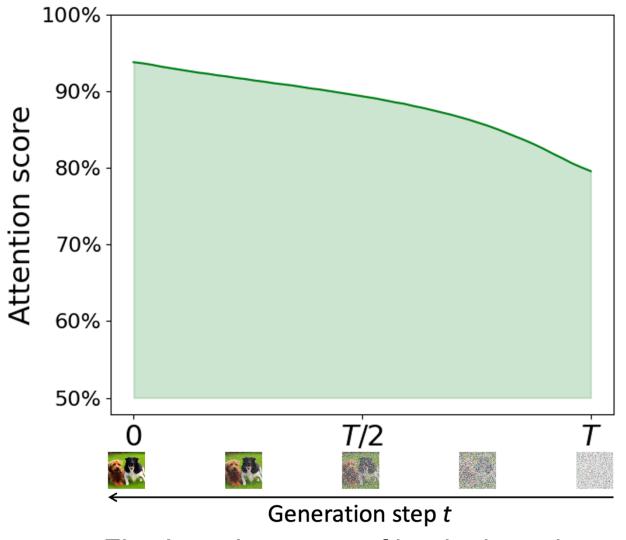
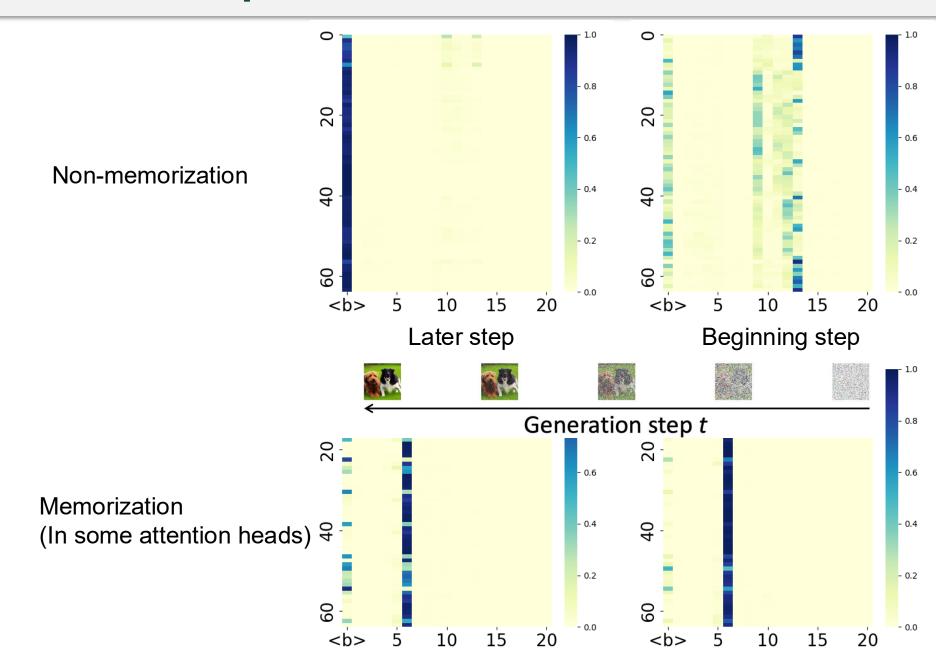


Fig. Attention score of beginning token

Attention map

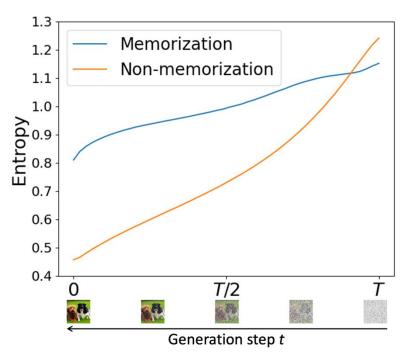


Finding 1

The attention is concentrated on specific tokens (trigger tokens) in some attention heads

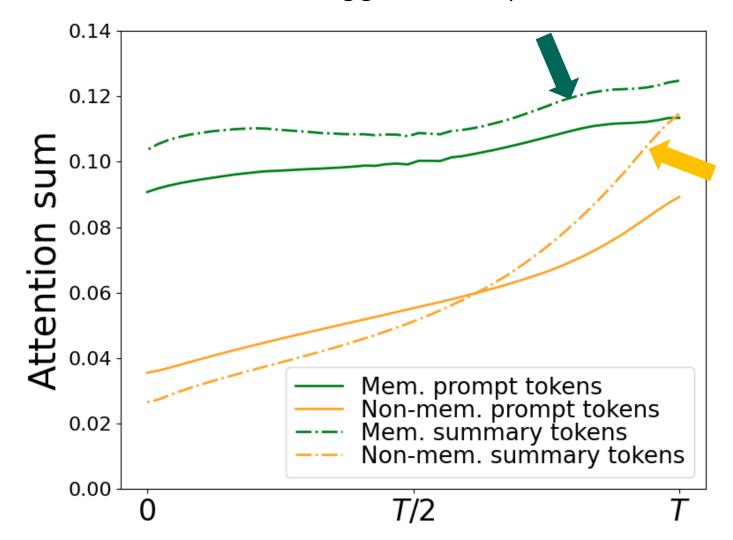
- Non-memorization
 - Gradually concentrate on beginning token → concentrated distribution
- Memorization:
 - Trigger token will distract attention from beginning token → disperse distribution

Attention Entropy:
$$E_t = \sum_{i=1}^N -ar{a}_i \log\left(ar{a}_i
ight)$$



Finding 2

Memorization' attention has a **slower** reduction on **summary tokens**. (More semantic information, better for trigger tokens)



Detection and mitigation

	_					
	\Box	\sim t	\sim	\sim t	\mathbf{i}	0
	ı ,	\leftarrow 1	-		I()	11
_	_	\sim ι	$\mathbf{-}$	U.	-	

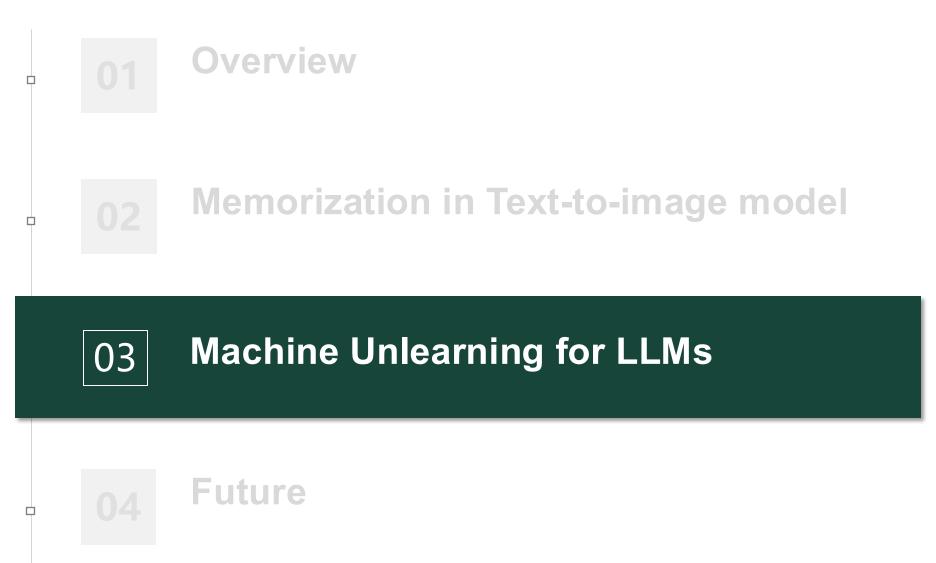
Methods	Images	Steps	AUROC	Time
[1]	4	50	0.9357	7.006
[2] - fast	1	1	0.9662	0.132
[2] - slow	1	50	0.9957	2.582
Ours - D	1	50	0.9998	1.745
Ours - E	1	1	0.9933	0.116

➤ Mitigation

^[1] Extracting training data from diffusion models. Carlini et al. USENIX Security 2023.

^[2] Detecting, explaining, and mitigating memorization in diffusion models. Wen at al. ICLR 2024.

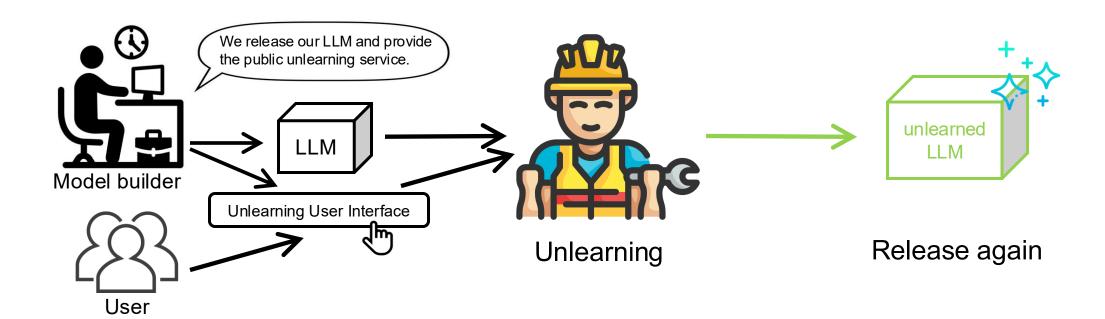
CONTENTS



[1] A General Framework to Enhance Fine-tuning-based LLM Unlearning. Ren et al, ACL 2025.

LLM unlearning

➤ Goal of unlearning: Removing the data influence from the LLM as if it has never encountered the data.



LLM unlearning

Removal-based

Target: forget

Suppression-based

Target: pretend to forget

> Removal-based unlearning

Gradient ascent (GA)

$$\mathcal{L}_{ ext{GA}} = -\mathcal{L}_{ ext{train}} \, = E_{(x,y) \sim \mathcal{D}_f} \left[\log \pi_{ heta}(y \mid x)
ight]$$

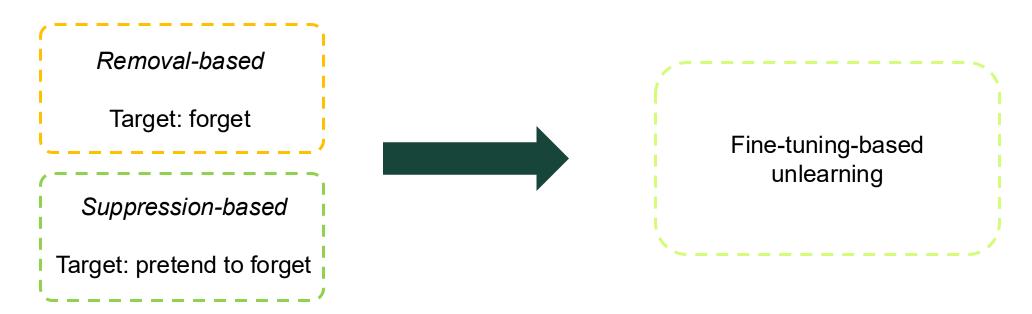
- Core intuition of GA
 - by fine-tuning with a reversed training loss, GA can negate the training influence of training data
- ➤ Suppression-based unlearning
 - Rejecting the forgetting data
 - Q: "Who is Harry Potter?" A: "I don't know"

Existing issues

- ➤ Challenge: Model utility reduces (model performance on normal data)
 - Destructive reversed loss.
 - Catastrophic forgetting of previous training such as alignment.

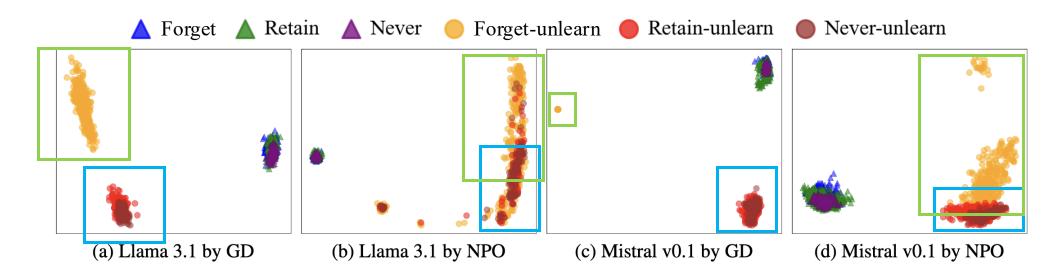
≻Motivation

We hope to provide a general framework for fine-tuning-based unlearning for better utility.



Q1: Does reversing the training loss truly negate the forgetting data's influence?

- ➤ If so, the unlearned models should behave the same between
 - the forgetting data
 - the data it has never encountered.
- Experiment: TOFU dataset (forgetting data, retaining data, never-seen data)
 - LLM has learned from forgetting and retaining data.
 - Then it is unlearned from forgetting data.



Q2: Is this distinct pattern associated with unlearning performance?

The distinction: Class-wise Separability Discriminant (CSD). (Lower is more distinct.)

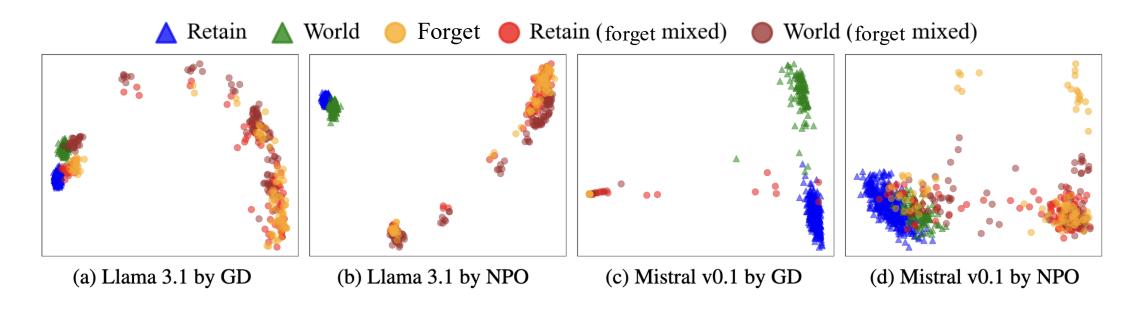
Unlearning effectiveness: ROUGE-L Recall. (Lower is better unlearning.)

	Llam	a 3.1	Mistral v0.1		
	GD	NPO	GD	NPO	
CSD	0.45	3.21	0.13	1.72	
ROUGE-L Recall	0.016	0.197	0.001	0.127	

Table 1: Unlearning effectiveness and distinction

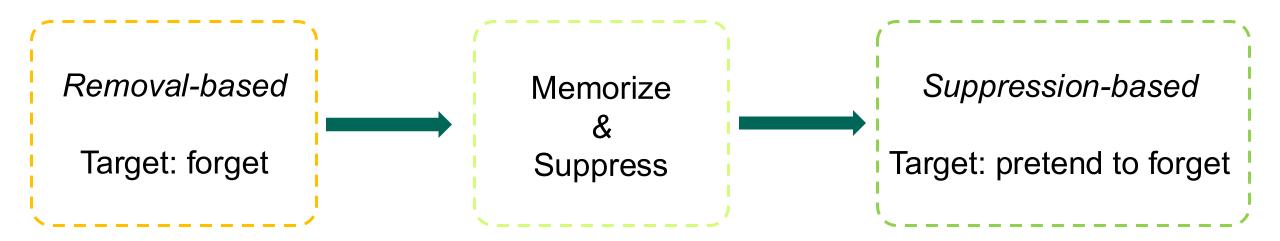
Q3: How do GA-based methods unlearn?

- > Experiment: Mixing forgetting data into normal data.
 - Forgetting data: Who is the author of <u>Watermelon on the Moon</u>?
 - Normal data: Where is Eiffel Tower?
 - Mixed data: Who is the author of Watermelon on the Moon? And where is Eiffel Tower?



- Mixed data is dominated by forgetting data.
- Forgetting data works as unlearning signals.

Removal-based methods



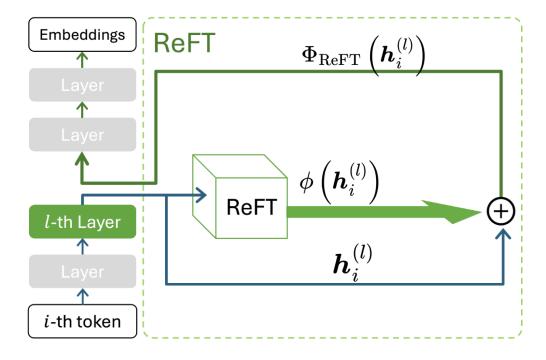
Model utility

Why do we choose fine-tuning?

- > Changing the parameters to remove knowledge (but actually failed)
- ➤ Worse, utility reduces. (The best way to preserve utility is to change as less as possible.)
 - Our strategy:
 - o freeze the main model
 - o add additional modules for fine-tuning.
 - Two plug-and-play components
 - Soft gate function
 - o ReFT module

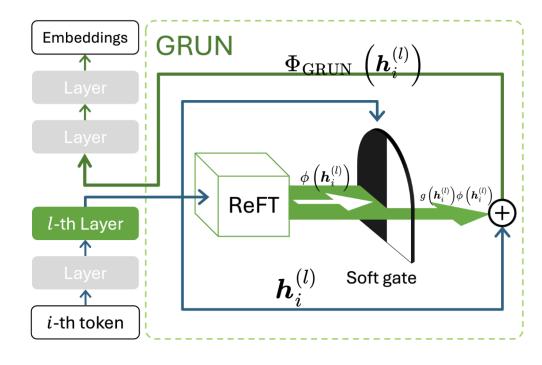
Our fine-tuning framework

Representation Fine-tuning (ReFT)^[1]



$$\Phi_{ ext{ReFT}}\left(oldsymbol{h}_i^{(l)}
ight) = oldsymbol{h}_i^{(l)} + \phi\left(oldsymbol{h}_i^{(l)}
ight)$$

Gated Representation UNlearning (GRUN)

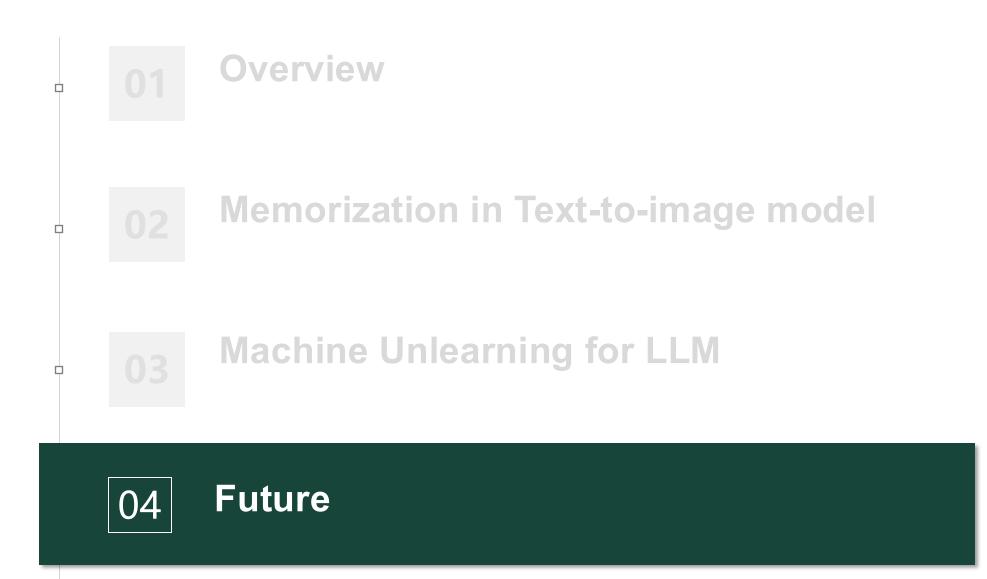


$$\Phi_{ ext{GRUN}}\left(oldsymbol{h}_i^{(l)}
ight) = oldsymbol{h}_i^{(l)} + g\left(oldsymbol{h}_i^{(l)}
ight) \phi\left(oldsymbol{h}_i^{(l)}
ight)$$

Experiments

$L_{ m u}$	LLM	p_{tgt}	Method	$p_{ m size}$	Hours	ROUGE-L Recall Unlearn Utility(Retain/Fact/World)	
GD	Llama	5%	Vanilla GRUN	100% 0.001 %	3.19 0.02	0.005 0.002	0.703 (0.493/0.854/0.762) 0.843 (0.888/0.843/0.798)
		10%	Vanilla GRUN	100% 0.001%	6.33 0.02	0.005 0.016	0.695 (0.483/0.818/0.785) 0.832 (0.906/0.729/0.862)
	Mistral	5%	Vanilla GRUN	100% 0.045 %	3.01 0.06	0.004 0.000	0.568 (0.742/0.360/0.601) 0.660 (0.956/0.485/0.539)
		10%	Vanilla GRUN	100% 0.045 %	6.07 0.18	0.001 0.000	0.396 (0.687/0.099/0.403) 0.595 (0.891/0.390/0.504)

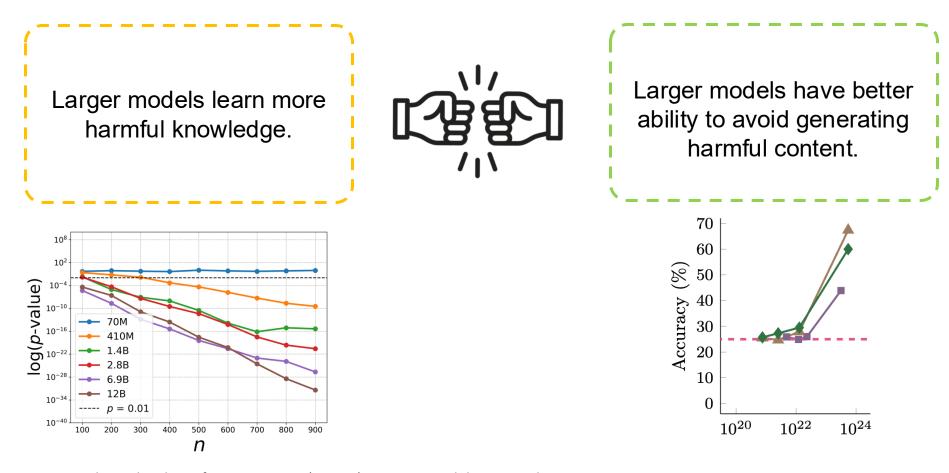
CONTENTS



Scaling laws for trustworthy Al

One weakness: Existing works may focus on small models like Llama – 7B.

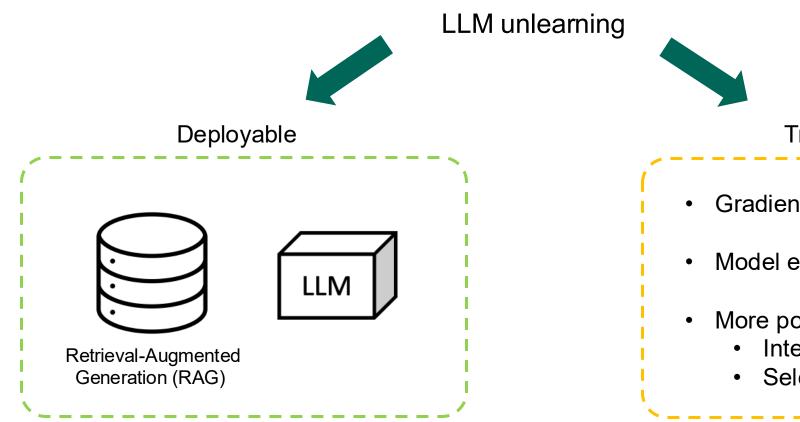
Good or bad when model grows? Two different directions:



^[1] Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models. Ren et al., WWW 2025.

^[2] Emergent Abilities of Large Language Models. Wei et al., TMLR 2022.

Data protection: Deployable and truly-forgetting LLM unlearning



Truly forgetting

- Gradient ascent
- Model editing
- More powerful tools
 - Interpretability (model)
 - Selective forgetting (data)

Acknowledgement

DSE Lab @ MSU

Collaborators

